新闻资讯

工程案例

当前位置:主页 > 新闻资讯 > 行业新闻 >

手机上买足彩的app钢铁行业龙头前三名机械工程专业的发展趋势一

  

手机上买足彩的app

手机上买足彩的app

  动力是发展生产的重要因素。17世纪后期,随着各种机械的改进和发展,随着煤和金33e78988e69d4属矿石的需要量的逐年增加,人们感到依靠人力和畜力不能将生产提高到一个新的阶段。在英国,纺织、磨粉等产业越来越多地将工场设在河边,利用水轮来驱动机械。但当时已有一定规模的煤矿、锡矿、铜矿矿井中的地下水,仍只能用大量畜力来提升和排除。在这样的生产需要下,18世纪初出现了T.纽科门的大气式蒸汽 凝汽器

  机,用以驱动矿井排水泵。但是这种蒸汽机的燃料消耗率很高,基本上只应用于煤矿。1765年J.瓦特发明了有分开的凝汽器的蒸汽机,降低了燃料消耗率。1781年瓦特又创制出提供回转动力的蒸汽机,扩大了蒸汽机的应用范围。蒸汽机的发明和发展,使矿业和工业生产、铁路和航运都得以机械化。蒸汽机几乎是19世纪唯一的机械动力源。但蒸汽机及体积庞大、笨重,应用很不方便。19世纪末,电力供应系统和电动机开始发展和推广。20世纪初,电动机已在工业生产中取代了蒸汽机,成为驱动各种工作机械的基本动力。生产的机械化已离不开电气化,而电气化则通过机械化才对生产发挥作用。 发电站初期应用蒸汽机为原动机。20世纪初期,出现了高效率、高转速、大功率的汽轮机,也出现了适应各种水力资源的大、小功率的水轮机,促进了电力供应系统的蓬勃发展。 19世纪后期发明的内燃机经过逐年改进,成为轻而小、效率高、易于操纵、并可随时启动的原动机。它先被用以驱动没有电力供应的陆上工作机械,以后又用于汽车、移动机械(如拖拉机、挖掘机械等)和轮船,到20世纪中期开始用于铁路机车。蒸汽机在汽轮机和内燃机的排挤下,已不再是重要的动力机械。内燃机和以后发明的燃气轮机、喷气发动机的发展,还是飞机、航天器等成功发展的基础技术因素之一。

  工业革命以前,机械大都是木结构的,由木工用手工制成。金属(主要是铜、铁)仅用以制造仪器、锁、钟表、泵和木结构机械上的小型零件。金属加工主要靠机匠的精工细作,以达到需要的精度。蒸汽机动力装置的推广,以及随之出现的矿山、冶金、轮船、机车等大型机械的发展,需要成形加工和切削加工的金属零件越来越多,越来越大,要求的精度也越来越高。应用的金属材料从铜、铁发展到以钢为主。机械加工包括铸造、锻压、钣金工、焊接、热处理等技术及其装备,以及切削加工技术和机床、刀具、量具等,得到迅速发展,保证了各产业发展生产所需的机械装备的供应。 喷气发动机

  社会经济的发展,对机械产品的需求猛增。生产批量的增大和精密加工技术的进展,促进了大量生产方法(零件互换性生产、专业分工和协作、流水加工线和流水装配线等)的形成。 简单的互换性零件和专业分工协作生产,在古代就已出现。在机械工程中,互换性最早体现在H.莫兹利于1797年利用其创制的螺纹车床所生产的螺栓和螺帽。同时期,美国工程师E.惠特尼用互换性生产方法生产火枪,显示了互换性的可行性和优越性。这种生产方法在美国逐渐推广,形成了所谓美国生产方法。20世纪初期,H.福特在汽车制造上又创造了流水装配线。大量生产技术加上F.W.泰勒在19世纪末创立的科学管理方法,使汽车和其他大批量生产的机械产品的生产效率很快达到了过去无法想象的高度。 20世纪中、后期,机械加工的主要特点是:①不断提高机床的加工速度和精度,减少对手工技艺的依赖;②发展少无切削加工工艺;③提高成形加工、切削加工和装配的机械化和自动化程度。自动化从机械控制的自动化发展到电气控制的自动化和计算机程序控制的完全自动化,直至无人车间和无人工厂;④利用数字控制机床、加工中心、成组技术等,发展柔性加工系统,使中小批量、多品种生产的生产效率提高到近于大量生产的水平;⑤研究和改进难加工的新型金属和非金属材料的成形和切削加工技术。

  18世纪以前,机械匠师全凭经验、直觉和手艺进行机械制作,与科学几乎不发生联系。到18~19世纪,在新兴的资本主义经济的促进下,掌握科学知识的人士开始注意生产,而直接进行生产的匠师则开始学习科学文化知识。他们之间的交流和互相启发取得很大的成果。在这个过程中,逐渐形成一整 内燃机

  套围绕机械工程的基础理论。 动力机械最先与当时的先进科学相结合。蒸汽机的发明人T.萨弗里、瓦特应用了物理学家D.帕潘和J.布莱克的理论。在蒸汽机实践的基础上,物理学家S.卡诺、W.J.M.兰金和开尔文建立起一门新的科学──热力学。内燃机的最重要的理论基础是法国的A.E.B. de罗沙在1862年创立的,1876年N.A.奥托应用罗沙的理论,彻底改进了他原来创造的粗陋笨重、噪声大、热效率低的内燃机而奠定了内燃机的地位。其他如汽轮机、燃气轮机、水轮机等都在理论指导下得到发展,而理论也在实践中得到改进和提高。

  早在公元前,中国已在指南车上应用复杂的齿轮系统,在被中香炉中应用了能永保水平位置的十字转架等机件。古希腊已有圆柱齿轮、圆锥齿轮和蜗杆传动的记载。但是,关于齿轮传动瞬时速比与齿形的关系和齿形曲线世纪之后方有理论阐述。手摇把和踏板机构是曲柄连杆机构的先驱,在各文明古国都有悠久历史,但是曲柄连杆机构的形式、运动和动力的确切分析和综合,则是近代机构学的成就。机构学作为一个专门学科迟至19世纪初才第一次列入高等工程学院(巴黎的工艺学院)的课程。通过理论研究,人们方能精确地分析各种机构,包括复杂的空间连杆机构的运动,并进而能按需要综合出新的机构。 机械工程的工作对象是动态的机械。它的工作情况会发生很大的变化。这种变化有时是随机的而不可预见;实际应用的材料也不完全均匀,可能存有各种缺陷;加工精度有一定的偏差,等等。与以静态结构为工作对象的土木工程相比,机械工程中各种问题更难以用理论精确解决。因此,早期的机械工程只运用简单的理论概念,结合实践经验进行工作。设计计算多依靠经验公式;为保证安全,都偏于保守。结果,制成的机械笨重而庞大,成本高,生产率低,能量消耗很大。

  从18世纪起,设计计算从两个方面不断提高了精确度:①在材料强度方面,从早期按静强度除以安全系数(考虑一切不精确性和分散性因素的经验系数)的粗糙计算,提高到考虑材料的疲劳(19世纪后半期);从一律按材料的无限疲劳寿命进行设计,改为按照实际要求的寿命进行有限寿命设计(20世纪前半期);从认为材料原则上不能有裂纹,发展到以断裂力学理论为依据,考虑裂纹材料的强度和寿命。②在机械结构的力学分析方面,从应用经验公式和简化的力学分析来确定各种受力和力矩,发展到应用复杂的力学分析和数学计算方法。进入20世纪,又出现各种实验应力分析方法。人们已能用实验方法测出模型和实物上各部位的应力,在发现应力过高过低时,便可能作出必要的调整。20世纪后半叶,人们开始应用有限元法和电子计算机的迅速可靠的数值计算,对复杂的机械及其零件、构件进行力、力矩、应力、应变等的分析和计算。对于掌握有充分的实践或实验资料的机械或其元件,已经可以运用统计技术,按照要求的可靠度科学地进行机械设计,或者按机械的实际情况(实际的质量、实际的使用条件等)科学地判断其可靠度和寿命。但在许多机械工程工作中,仍还应用一些经验方法、经验公式和经验系数等,不过其中的科学成分在不断增加,经验成分则不断减少。